Karışık Sayılarda Çıkarma – Yöntemler ve Örnekler

Karışık sayı, bir tam sayı ve bir kesir içeren sayıdır, örneğin 2 ½ bir karışık sayıdır.

Karışık Sayılar Nasıl Çıkarılır?

Bu makalede karışık kesirleri çıkarmanın veya karışık sayıları çıkarmanın yollarını öğreneceğiz. Karışık kesirlerin çıkarılması iki yöntem içerir.

Yöntem 1

İlk yöntem şunları gerektirir:

  • Tam sayıları çıkarma.
  • Kesirleri önce benzer kesirlere dönüştürerek çıkarma.
  • Tam sayıların ve benzer kesirlerin farklarını toplama.

Örnek 1

6 1/3 – 3 1/12

= (6 – 3) + (1/3 – 1/12)

= 3 + (1/3 – 1/12)

12 ve 3’ün L.C.M.’sini 12 olarak bulunuz.

= 3 + (1 × 4/3 × 4 – 1 × 1/12 × 1)

= 3 + 4/12 – 1/12

= 3 + (4 – 1)/12

= 3 + 3/12

= 3 + ¼

= 3 ¼

Yöntem 2

Karışık kesirleri çıkarmanın ikinci yöntemi şunları içerir:

  • İlk adım karışık kesirleri uygun olmayan kesirlere dönüştürmektir
  • Kesirleri ortak paydaya sahip benzer kesirlere dönüştürün
  • Şimdi normal çıkarma işlemini yapın.
  • Sonuçları mümkün olan en düşük terimlerle ifade edin.

Örnek 2

Çıkarma: 6 1/3 – 3 1/12

= (6 × 3) + 1/3 + (3 × 12) + 1/12

= 19/3 – 37/12

3 ve 12’nin L.C.M.’si 12’dir

= 19 × 4/3 × 4 – 37 × 1/12 × 1

= 76/12 – 37/12

= 76 – 37/12

= 39/12

= 13/4

= 3 ¼

Paydası Farklı Olan Karışık Kesirler Nasıl Çıkarılır?

Örnek 3

8 5/6 – 3 2/9

  • İlk prosedür, karışık kesirleri uygun olmayan kesirlere dönüştürmektir.

Tam sayıyı kesrin paydası ile çarpın ve ardından payı ekleyin. Bu sayı düzgün olmayan kesrin payı olur. Uygun olmayan kesrin paydası, karışık kesrin paydası ile aynı kalır.

{(6 x 8) + 5}/6 = 53/6

{(3 x 9) + 2}/9 =29/9

  • Kesirleri ortak paydalar içerecek şekilde değiştirin

9 ve 6 kesirlerinin L.C. M = 18

53/6 = 159/18

29/9 = 58/18

  • İlk kesri 3/3 ile ve ikinci kesri 2/2 ile çarptığınızda her iki payda için de 18 elde edersiniz. 3/3 ve 2/2’nin 1’e eşit olduğunu fark edebilirsiniz, bu nedenle aslında her iki kesri de 1 ile çarpıyoruz ve kesirlerin değerini değiştirmiyoruz.
  • Şimdi çıkarma işlemini gerçekleştirin

159/18 – 58/18

  • Payları korurken paydaları çıkarın

= (159 – 58)/18

= 101/18

= 5 11/18

Çözümlü Daha Fazla Örnek

  1. Çıkarma:7 5/12 – 2 7/12

Çözüm

7 5/12 – 2 7/12

Kesirli kısımların ortak paydaları olduğundan, daha küçük birim olan 5/12’den daha büyük kesirli kısım olan 7/12’yi çıkarmak için bir ödünç alın.

7 5/12 = 6 + (1+ 5/12) = 6 17/12

Tam sayıları ve kesirleri ayrı ayrı çıkarma

(6 – 2) = 4

17/12 – 7/12

Paydayı koruyarak kesirlerin paylarını çıkarma

(17 – 7)/12 = 10/12

Kesri mümkün olan en düşük terimlerine kadar sadeleştirin

10/12 = 5/6

Kesirli kısmı tam sayıya ekleyin

(4 + 5/6) = 4 5/6

  1. Bir basketbol maçının sonunda baş antrenör, başlangıçta dokuz buçuk litre olan bir şişe suyun üç buçuk litreye düştüğünü fark etti. Oyuncular tarafından kaç litre su tüketilmiştir?

Çözüm

Başlangıçtaki su hacmi = dokuz ve sekizde üç = 9 3/8

Son su hacmi = üç ve on altıda dokuz = 3 9/16

9 3/8 – 3 9/16

Karışık kesirleri düzgün olmayan kesirlere dönüştürün

9 3/8 = {(9 x 8) + 3}/8

= 75/8

3 9/16 = {(3 x 16) + 9}/16

= 57/16

Kesirleri ortak bir payda içerecek şekilde değiştirin.

Dolayısıyla 8 ve 16’nın LCM’si 16’dır,

75/8 = 150/16

Ve 57/16 =57/16

Kesirleri çıkarın

150/16 – 57/16

Payları korurken paydaları çıkarın

(150 – 57)?16

=93/16

= 5 13/16

Dolayısıyla, oyuncular tarafından tüketilen litre su miktarı = 5 13/16

Özetle, karışık sayıları çıkarabilmek için:

Paydalar farklıysa, denk olmayan kesirlerin En Küçük Ortak Katını bulun. Eğer birinci kesir ikinci kesirden küçükse, tam sayıdan bir birim ödünç almalısınız. Şimdi tam sayıları ve kesirleri ayrı ayrı çıkarın. Kesir farkı ile tam sayı farkının toplamını bulun. Nihai cevabı mümkün olan en düşük terimlerine sadeleştirin.

Önceki Ders | Ana Sayfa | Sonraki Ders

Yorum yapın